Como representar graficamente uma função Cosecant
Cosecant é quase exatamente o mesmo que secante porque é o inverso do seno (em oposição à co-seno). Em qualquer lugar sine tem um valor de 0, você vê uma assíntota no gráfico cosecant. Uma vez que o gráfico do seno o atravessa x-eixo três vezes no intervalo
você tem três asymptotes e duas sub-intervalos devem ser representadas graficamente.
O recíproco de 0 é indefinido, e o recíproco de um valor indefinido é 0. Uma vez que o gráfico de seno nunca é indefinido, a recíproca do seno nunca pode ser 0. Por esta razão, o gráfico da função controladora cossecante f(x) = Csc x não tem x-intercepta, por isso não se preocupe em procurar por eles.
Os passos seguintes explicam como representar graficamente cosecant:
Encontrar as asymptotes do gráfico.
O gráfico da sine revela os asymptotes de cosecant.Porque cosecant é o inverso da sine, em qualquer lugar no gráfico de seno, onde o valor é 0 cria uma assíntota no gráfico da secante. O gráfico controladora da sine tem valores de 0 a
Então cosecant tem três asymptotes. A figura mostra estas asymptotes.
Calcule o que acontece com o gráfico no primeiro intervalo entre 0 e pi.
O período do gráfico sine pai começa em 0 e termina em
Você pode descobrir o que o gráfico faz entre o primeiro asymptote a 0 eo segundo assíntota na
O gráfico da sine vai de 0 a 1 e, em seguida, volta para baixo novamente. Cosecant leva a recíproca desses valores, o que faz com que o gráfico para obter maiores.
Repita o procedimento para o segundo intervalo
Se você consultar o gráfico senoidal, você vê que ele vai de 0 até -1 e, em seguida, volta-se novamente. Porque cosecant é o inverso, o gráfico fica maior no sentido negativo.
Localizar o domínio e intervalo da curva.
asymptotes de cosecant começam em 0 e repetir a cada pi. Seu domínio é
Seu alcance, portanto, é
Você pode ver o gráfico pai cheio,
na figura.