Aplicando as funções de Bessel esférica e Neumann a uma partícula gratuito

Na física quântica, é possível aplicar as funções de Bessel esféricas e Neumann a uma partícula livre (uma partícula que não é restringida por qualquer potencial). A função de onda em coordenadas esféricas assume esta forma:

image0.png

e

image1.png

dá-lhe os harmônicos esféricos. O problema agora é resolver para a parte radial, Rnl(r). Aqui está a equação radial:

image2.png

Para uma partícula livre, V (r) = 0, então a equação torna-se radial

image3.png

A maneira como você costuma lidar com esta equação é substituir

image4.png

e porque você tem uma versão da mesma equação para cada n índice é conveniente simplesmente removê-lo, de modo que Rnl (r) torna-se

image5.png

Isto significa que a substituição

image6.png

torna-se o seguinte:

image7.png

A parte radial da equação parece difícil, mas as soluções vir a ser bem conhecido - esta equação é a chamada equação de Bessel esférica, e a solução é uma combinação das funções de Bessel esféricas

image8.png

e as funções Neumann esféricas

image9.png

onde umeu e Beu são constantes. Então, quais são as funções de Bessel esféricas e as funções Neumann esféricos? As funções de Bessel esféricas são dadas pela

image10.png

Aqui está o que as primeiras iterações

image11.png

parece:

image12.png

Como sobre as funções Neumann esféricos? As funções Neumann esféricas são dadas pela

image13.png

Aqui estão as primeiras iterações

image14.png

menu