Como gráficos de funções Parent

Em matemática, você vê certas gráficos uma e outra vez. Por essa razão, estas funções originais, comuns são chamados gráficos de pais,

e que incluem gráficos de funções quadráticas, raízes quadradas, valores absolutos, cúbicas e raízes cúbicas.

Gráficos de funções quadráticas

função quadrática são funções em que o segundo poder, ou quadrado, é o mais alto a que a quantidade ou a variável desconhecida é levantada .. A função yX =2ou f(x) = x2 é uma função quadrática, e é o gráfico de pai para todas as outras funções quadráticas.

O atalho para representar graficamente a função f(x) = x2 é começar no ponto (0, 0) (o origem) E marcar o ponto, o chamado vértice. Note-se que o ponto (0, 0) é o vértice de apenas a função pai. No cálculo, este ponto é chamado de ponto crítico, e alguns professores do pré-cálculo também usar essa terminologia. Sem entrar na definição de cálculo, isso significa que o ponto é especial.

O gráfico de qualquer função quadrática é chamado um parábola. Todas as parábolas tem a mesma forma básica. Para obter os outros pontos, você traça os pontos (1,12) = (1,1), (2,22) = (2,4), (3,32) = (3,9), etc. Esta representação gráfica ocorre do outro lado do vértice bem e continua indo, mas geralmente apenas um par de pontos em ambos os lados do vértice lhe dá uma boa idéia do que o gráfico parece.

image0.jpg

Esta figura mostra um exemplo de uma função quadrática em forma de gráfico.

Gráficos de funções de raizes quadradas

UMA gráfico da raiz quadrada está relacionada com um gráfico quadrática. O gráfico é quadrática f(x) = x2, Considerando o gráfico da raiz quadrada é g(x) = x1/2. O gráfico de uma função de raiz quadrada parece com a metade esquerda de uma parábola, que foi rodado 90 graus em sentido horário. Você também pode escrever a função de raiz quadrada como

image1.png

No entanto, apenas metade da parábola existe, por duas razões. Em primeiro lugar, o seu gráfico pai só existe quando x é zero ou positivo (porque você não consegue encontrar a raiz quadrada de números negativos [e mantê-los reais, de qualquer maneira]). Em segundo lugar, a parábola só existe quando g(x) É positivo, porque quando você está convidado a encontrar

image2.png

você está sendo solicitado para encontrar apenas o principal ou raiz positiva de x..

Este gráfico começa na origem (0, 0) e, em seguida, move-se a (1, sqrt (1)) = (1,1), (2, sqrt (2)), (3, sqrt (3)), etc.

Esta figura,

image3.jpg

mostra o gráfico para a função de raiz quadrada pai

image4.png

Observe que os valores que você começa traçando pontos consecutivos não exatamente dar-lhe os números mais agradáveis. Em vez disso, tente escolher valores para os quais você pode facilmente encontrar a raiz quadrada. Veja como isso funciona: Comece em (0, sqrt (0)) = (0,0), então vá para (1, sqrt (1)) = (1,1), então a (4, sqrt (4)) = (4,2), em seguida, a (9, sqrt (9)) = (9,3), etc.

Gráficos de funções de valor absoluto

O gráfico pai-valor absoluto da função y = |x| Acontece todos os não-negativo insumos (0 ou positivo). Para elaborar gráficos de funções de valor absoluto, você começa na origem e, em seguida, cada número positivo é mapeado para si, enquanto cada número negativo é mapeado ao seu homólogo positivo.

image5.jpg

Esta figura mostra o gráfico de uma função do valor absoluto.

Gráficos de funções cúbicos

Em um função cúbica, o mais alto grau de qualquer variável é três. A função f(x) = x3 é a função principal. Você começa um gráfico do gráfico da função pai cúbico na origem (0, 0).

image6.jpg

A partir de (0,0), que representa graficamente (1,13) = (1,1), (2,23) = (2,8), etc, para a esquerda de (0,0) que representa graficamente (-1, (- 1)3) = (- 1, -1), (-2, (- 2)3) = (- 2, -8), etc .. A função pai cúbico, g(x) = x3, é mostrado em forma de gráfico nesta figura.

Gráficos de funções cubo-raiz

funções Cube-raiz estão relacionadas com as funções cúbicos do mesmo modo que as funções de raizes quadradas estão relacionados com as funções quadráticas. Você escreve funções cúbicos como f(x) = x3 e funções de cubo-raiz como g(x) = x1/3 ou

image7.png

Notando que uma função de cubo-root é estranho é importante porque ajuda você gráfico lo.

image8.jpg

menu