Como remover um terceiro ângulo resolver um Trigonometria Identity

Soma e diferença identidades geralmente envolvem dois ângulos diferentes e, em seguida, um terceiro ângulo combinado. Ao provar essas identidades trigonométricas, é necessário muitas vezes para se livrar desse terceiro ângulo. O exemplo a seguir envolve uma soma de dois ângulos diferentes.

image0.png

  1. Substituir o co-seno de a soma dos dois ângulos com a sua identidade.

    image1.png
  2. Quebra-se a fração colocando cada termo no numerador sobre o denominador.

    image2.png
  3. Reduzir a primeira fracção. Voltar a escrever a segunda fracção, como o produto de duas fracções. Em seguida, substitua as duas frações em que o produto usando a identidade de razão.

    image3.png

O próximo exemplo mostra uma identidade para três vezes um ângulo: sin3theta- = 3sintheta- - 4 sin3theta-.

  1. Substitua o 3theta- com a soma dos theta- e 2theta- para criar a identidade para a soma de dois ângulos.

    image4.png
  2. Aplicar a identidade de soma ângulo para sine.

    image5.png
  3. Agora substitua cos2theta- e sin2theta- usando as identidades de duplo ângulo.

    image6.png

    Você tem que escolher a identidade certa para o cos2theta-. Neste exemplo, você quer o resultado final a ser todos os senos do mesmo ângulo.

  4. Multiplique pelo lado direito.

    image7.png
  5. Substitua cos2theta- com seu equivalente usando a identidade de Pitágoras. Em seguida, simplificar os termos.

    image8.png

menu