Problemas Prática geometria com triângulos e polígonos
UMA polígono
é uma figura geométrica que tem pelo menos três lados. O triângulo é o polígono mais básico. Você vai encontrar as seguintes fórmulas e propriedades úteis ao responder a perguntas envolvendo desigualdades triângulo, triângulos, as relações entre os ângulos e lados de triângulos, e ângulos interiores e exteriores de polígonos.Todos os triângulos
A soma dos três ângulos internos de um triângulo é 180 # 176-.
O lado maior de um triângulo é oposto ao maior ângulo do triângulo.
A soma dos dois lados mais curtos de um triângulo deve ser maior do que o lado mais comprido do triângulo.
O ângulo exterior de um triângulo é igual à soma dos dois ângulos internos não adjacentes do triângulo.
o centroid de um triângulo divide cada médio do triângulo em segmentos com uma proporção de 2: 1.
triângulos retângulos
O teorema de Pitágoras que uma2 + b2 = c2, Onde uma e b representam as pernas do triângulo e direita c representa a hipotenusa.
Quando você desenha uma altitude à hipotenusa de um triângulo retângulo, você formar dois triângulos retângulos que são semelhantes uns aos outros e também semelhante ao triângulo direito original. Porque estes triângulos são semelhantes, você pode configurar as seguintes proporções:
A altura para a hipotenusa de um triângulo rectângulo é a média proporcional entre os dois segmentos, que a hipotenusa é dividido em:
A perna de um triângulo retângulo é a média proporcional entre a hipotenusa ea projeção da perna da hipotenusa:
Aqui estão as razões trigonométricas em um triângulo retângulo:
polígonos
A soma de a medida do grau dos ângulos internos de um polígono é igual a 180 (n - 2), onde n representa o número de lados.
A soma dos ângulos exteriores de um polígono é 360 # 176-.
A área de um polígono regular é igual
o apótema é o segmento de linha do centro do polígono para o ponto médio de um dos lados.