Analisar um Circuito RL paralelo usando uma equação diferencial
Um circuito paralelo RL de primeira ordem tem um resistor (ou rede de resistores) e um único indutor. circuitos de primeira ordem podem ser analisados usando equações diferenciais de primeira ordem. Ao analisar um circuito de primeira ordem, você pode entender o seu calendário e atrasos.
Menu
Analisando tal circuito RL paralelo, como a mostrada aqui, segue o mesmo processo como analisar um circuito série RC. Então, se você estiver familiarizado com esse procedimento, isso deve ser uma brisa.
Se o seu circuito RL paralelo tem um indutor conectado com uma rede de resistências ao invés de um único resistor, você pode usar a mesma abordagem para analisar o circuito. Mas você tem que encontrar o equivalente Norton em primeiro lugar, reduzindo a rede de resistências a um único resistor em paralelo com uma única fonte de corrente.
Comece com o circuito paralelo RL simples
Porque o resistor e indutor estão ligados em paralelo no exemplo, eles devem ter a mesma tensão v (t). A corrente resistor EuR(T) é baseado na lei de Ohm:
O elemento de restrição de um indutor é dada como
Onde isto) é a corrente no indutor e eu é a indutância.
Você precisa de uma mudança de corrente para gerar tensão através de um indutor. Se a corrente do indutor não muda, não há nenhuma tensão indutor, o que implica um curto-circuito.
agora substituir v (t) = Ldi (t) / dt em lei de Ohm, porque você tem a mesma tensão sobre o resistor e indutor:
lei das correntes de Kirchhoff (KCL) diz que as correntes de entrada são iguais às correntes de saída em um nó. Use KCL no Nó A do circuito de amostra para obter EuN(T) = IR(T) = I (t).
Substituto EuR(T) na equação KCL para lhe dar
O circuito RL paralelo é um circuito de primeira ordem porque é descrito por uma equação diferencial de primeira ordem, onde a variável desconhecida é a corrente do indutor isto). Um circuito contendo um único indutor equivalente e um resistor equivalente é um circuito de primeira ordem.
Sabendo a corrente do indutor dá-lhe a energia magnética armazenada em um indutor.
Em geral, a corrente no indutor é referido como uma variável de estado, porque a corrente do indutor descreve o comportamento do circuito.
Calcular a resposta de entrada zero para um circuito paralelo RL
Aqui está como o circuito RL paralelo é dividida em dois problemas: a resposta de entrada zero ea resposta de estado zero. Aqui, você vai começar por analisar a resposta de entrada zero.
Para simplificar, você definir a fonte de entrada (ou forçando função) igual a 0: EuN(T) = 0 amperes. Isso significa que nenhuma corrente de entrada de todos os tempos - um grande zero, gordura. A equação diferencial de primeira ordem reduz a
Para uma fonte de entrada de não, a corrente do indutor atual EuZEu é chamado um resposta de entrada zero. Sem forças externas são actue sobre o circuito excepto para o seu estado inicial (ou indutor de corrente, neste caso). A saída é devido a alguma corrente do indutor inicial Eu0 no tempo t = 0.
Você faz uma suposição razoável para a solução (a função exponencial natural!) E substituir o seu palpite na equação diferencial RL de primeira ordem. Suponha que a corrente do indutor e uma solução a ser
EuZI(T) = Sejakt
Esta é uma suposição razoável porque a derivada do tempo de um exponencial também é uma exponencial. Como um bom amigo, a função exponencial não vai deixar você para baixo quando resolver estas equações diferenciais.
Você determinar as constantes B e k Próximo. Substitua seu palpite EuZI(T) = Estarkt na equação diferencial:
substituindo EuZI(T) com Estarkt e fazer alguma matemática dá-lhe o seguinte:
Você tem a equação característica depois de levar para fora Estarkt:
A equação característica dá-lhe um problema algébrico para resolver para a constante k:
Usar k = -R / L e a corrente do indutor inicial Eu0 em t = 0. Isto implica que B = I0, assim, a resposta de entrada zero EuZI(T) dá-lhe o seguinte:
a constante L / R chama-se a tempo constante. A constante de tempo fornece uma medida de quanto tempo uma corrente do indutor leva para ir para 0 ou mudar de um estado para outro.
Para analisar melhor o circuito RL paralelo, você deve calcular resposta de estado zero do circuito, e depois adicionar esse resultado com a resposta de entrada zero para encontrar a resposta total para o circuito.