Taxa, Time, e problemas de distância sobre o PSAT / NMSQT

Você provavelmente vai ter alguns problemas de ritmo, tempo e distância sobre o PSAT / NMSQT. Você não odeia questões em que um cara está dirigindo para o leste a 40 milhas por hora e um amigo está se movendo a oeste fazendo 65? Você é suposto para descobrir onde eles se encontram e ignorar o fato de que na vida real eles podem apenas chamar uns aos outros e explicar onde eles estão.

Mas se você pegar um desses problemas no PSAT / NMSQT, pelo menos você pode resolvê-lo com bastante facilidade. Apenas lembre-se esta fórmula: Rcomi x Time = Distance (IDT).

Um pouco esboço ou um gráfico muitas vezes ajuda-lo com perguntas taxa / tempo / distância.

Aqui está um exemplo. O robô toddles juntamente com um caudal de 3 pés por minuto durante 30 minutos. robot de Megabrain amplia em 30 pés por segundo para 10 minutos. Quanto mais longe vai viajar robô Megabrain do que o seu robô?

Para resolver este, tentar um gráfico. Os títulos coincidem com os termos da fórmula, Taxa x Tempo = Distância. Antes de preencher as caixas, no entanto, ter certeza de que tudo combina. robot de Megabrain viaja 30 pés por segundo. (Cuidado com estas mudanças difíceis em unidades!) Porque um minuto tem 60 segundos, velocidade de Megabrain é de 1800 pés por minuto.

Agora você pode preencher a tabela. Comece com o que você sabe:

TaxaTempoDistância
seu robô3 pés por minuto30 minutos
robot de Megabrain1800 pés por minuto10 minutos

Agora preencha os quadrados vazios. O robô vai 3 x 30 ou 90 pés. robô de Megabrain viaja 1,800 x 10 ou 18.000 pés.

TaxaTempoDistância
seu robô3 pés por minuto30 minutos90
robot de Megabrain1800 pés por minuto10 minutos18.000

robot de Megabrain viaja 18.000 - 90 pés, ou 17.910 pés mais longe do que o seu.

Você pode ser solicitado quão distantes eles são. Se assim for, se notar que está viajando na mesma direcção ou na direcção oposta. Na mesma direção, você subtrair. Na direção oposta, você adiciona. (Esboço-lo e você vai ver.)

Caia na estrada e tentar estes problemas:

  1. James e Kat são situando-se em extremos opostos de um campo de futebol, 300 pés de distância uma da outra. Se Kat anda a uma velocidade de 12 pés por segundo, James caminha a uma taxa de 8 pés por segundo, e eles caminham em direção ao outro, quanto tempo vai demorar para eles para se encontrar?

    (a) 15 segundos
    (b) 75 segundos
    (C) 2 minutos
    (D) 3 minutos
    (E) 15 minutos
  2. Dois barcos de encontrar-se em um lago, e depois de os capitães compartilhar sanduíches, sem cabeça em diferentes direções. As cabeças de lancha diretamente para o leste a uma velocidade de 36 milhas por hora, eo veleiro vai para o norte a uma velocidade de 15 milhas por hora. Se ambos os barcos continuar viajando em linhas retas, quão longe eles vão ser em 2 horas?

    (a) 21 milhas
    (B) 39 milhas
    (C) 51 milhas
    (D) 78 milhas
    (E) 100 milhas
  3. Alexis caminhou a uma taxa de 3 milhas por hora para 20 minutos e, em seguida, parou para falar ao telefone por 16 minutos. Depois de sua conversa por telefone, Alexis andou a uma velocidade de 5 milhas por hora para o restante da hora. Qual foi a velocidade média de Alexis sobre a hora?

    (A) 2 mph
    (B) 2,5 mph
    (C) 3 mph
    (D) 3,5 mph
    (E) 4 mph

Agora confira as suas respostas:

  1. UMA. 15 segundos

    Você sabe que James e Kat estão caminhando para o mesmo período de tempo, e você quer saber o que que o tempo é, por isso, para o momento, apenas chamá-lo t. James vai andar (8 pés / segundo) x t pés (taxa x tempo), e Kat andará (12 pés / segundo) x t pés. Juntos, eles andam de 300 pés, assim você sabe que 8t + 12t = 300.

    Adicionar juntos como termos e você obter 20t = 300, e quando você dividir você vê que t = 15. Você pode pensar sobre unidades por lembrar que você está dividindo 300 pés por 20 pés / segundo, que funciona a 15 segundos. Choice (A) é a sua resposta.

  2. D. 78 milhas

    IDT e triângulos retângulos? Você pode fazê-lo! Desenha-se uma imagem em primeiro lugar.

    image0.jpg

    Você sabe que cada barco está viajando por 2 horas, assim você pode usar RTD para determinar o quão longe cada um tem percorrida: 30 milhas para o veleiro e 72 milhas para o barco a motor. Agora tudo que você precisa fazer é aplicar o teorema de Pitágoras para descobrir o quão longe os barcos são: 302+ 722 = d2- 900 + 5184 = d2- d = 78 milhas de distância, Choice (D).

  3. C. 3 mph

    Para encontrar a velocidade média de Alexis, você primeiro precisa encontrar a distância total percorrida e ela o tempo total que ela estava viajando (estes ambos incluem o tempo em que ela foi interrompida!). Para a primeira parte de sua viagem, Alexis viajou por 20 minutos, ou 1/3 de hora, a uma taxa de 3 milhas por hora.

    Usando RTD, você pode ver que ela viajou uma milha durante os primeiros 20 minutos. Alexis não avançou para a frente durante a sua conversa por telefone, para que você saiba que ela passou os primeiros 36 minutos vai de 1 milha. Nos 24 minutos restantes (60 - 36 = 24 minutos) de uma hora, Alexis andou a uma velocidade de 5 milhas por hora.

    24 minutos para fora de 60 é o mesmo que 2/5 de hora. Usando RTD, (2/5) x 5 = 2 milhas de viagem durante os últimos 24 minutos, para um total de 3 milhas em 60 minutos. Isso faz com que a velocidade média de Alexis 3 milhas por hora, Choice (C).

menu